What to show in the white paper - F_L, F₂

What do we do with F_2 , F_L ?

- Initially, it was thought that F_L was a golden measurement in e+A collisions and would discriminate between saturation and non-saturation effects
- Then came the model predictions....
- Many model predictions were previously shown from:
 - Leading-twist shadowing
 - FGS'10 Frankfurt, Guzey, Strikman
 - Saturation
 - ► IPSat/bCGC Raju, Lappi, Henri
 - ▶ rcBK Albacete, Paloma

Leading-Twist Shadowing (FGS)

- Model is not a saturation model but creates saturation-like effects by hand.
- Does not reproduce the proton F₂ and FL data
 - → Uses decade-old CTEQ PDFs?

Shadowing models

- IPSat/bCGC
 - Not fit to most recent data
- rcBK
 - ➡ Fit to most recent data, describes data very well, most theoretically sound saturation model. Implementing running-coupling effects addresses higher-order effects

How to represent F_L and F₂ in the White paper?

 Idea - linear and non-linear effects should have different dependences on A

How to represent F_L and F₂ in the White paper?

 Idea - linear and non-linear effects should have different dependences on A

How to represent F_L and F₂ in the White paper?

- FGS model is so far off in the proton, can't use this.
 Not ideal in any case to represent non-saturation effects.
- Use DSSZ (NLO pQCD calculation)
 - → Uses MSTW for the proton PDFs and then performs an analysis on:
 - DIS of charged leptons on nuclei
 - Drell-Yan di-lepton production
 - neutrino-nucleus scattering
 - inclusive pion production in d+A collisions

DSSZ vs rcBK

DSSZ vs rcBK

Why so little difference between DSSZ and rcBK?

- Are we still just to high in Q² to see anything?
 - → I have $Q^2 = 0.5$, 0.85, 1.20, 2.0 from rcBK...

What's left to do?

- Look at lower Q²
- Make plots for F_L is that where the difference lies?

